2.3cm (0.9 Type) Black-and-White LCD Panel

Description

The LCX029CST is a 2.3 cm diagonal active matrix TFT-LCD panel addressed by polycrystalline silicon super thin film transistors with a built-in peripheral driving circuit. Use of three LCX029CST panels provides a full-color representation. The striped arrangement suitable for data projectors is capable of displaying fine text and vertical lines.
The adoption of DMS*1 structure and high light resistance structure realize a high luminance screen.
 And cross talk free circuit and ghost free circuit contribute to high picture quality.
This panel has a polysilicon TFT high-speed scanner and built-in function to display images up/down and/or right/left inverse. The built-in 5V interface circuit leads to lower voltage of timing and control signals.
The panel contains an active area variable circuit which supports S-XGA 5:4 and PC-98 8:5 data signals by changing the active area according to the type of input signal.

*1 Dual Metal Shield

Features

- Number of active dots: 786,432 (0.9 Type, 2.3cm in diagonal)
- XGA, SVGA, VGA, NTSC, PAL display
- SXGA display with simple display
- High optical transmittance: 26\% (typ.)
- Built-in cross talk free circuit and ghost free circuit
- High contrast ratio with normally white mode: 400 (typ.)
- Built-in H and V drivers (built-in input level conversion circuit, 5 V driving possible)
- Up/down and/or right/left inverse display function
- Antidust glass package
- Left twist liquid crystal

Element Structure

- Dots: $1024(\mathrm{H}) \times 768(\mathrm{~V})=786,432$
- Built-in peripheral driver using polycrystalline silicon super thin film transistors

Applications

- Liquid crystal data projectors
- Liquid crystal multimedia projectors
- Liquid crystal rear-projector TVs, etc.
* The company's name and product's name in this data sheet is a trademark or a registered trademark of each company.

[^0]Block Diagram

Absolute Maximum Ratings ($\mathrm{Vss}=0 \mathrm{~V}$)

- H driver supply voltage HVDD
- V driver supply voltage VVdD
- Common pad voltage COM
- H shift register input pin voltage HST, HCK1, HCK2, RGT
- V shift register input pin voltage VST, VCK, PCG, BLK, ENB, DWN HB, VB
- Video signal input pin voltage VSIG1 to 12, PSIG
- Operating temperature* Topr
- Storage temperature Tstg
* Panel temperature inside the antidust glass

Operating Conditions (Vss = 0 V)

- Supply voltage

HVDD	$13.5 \pm 0.5 \mathrm{~V}$
VVDD	$15.5 \pm 0.5 \mathrm{~V}$

- Input pulse voltage (Vp-p of all input pins except video signal and uniformity improvement signal input pins)

[^1]
Pin Description

Pin No.	Symbol	Description
1	PSIG	Uniformity improvement signal
2	VssGR	GND for right V gate
3	VSIG1	Video signal 1 to panel
4	VSIG2	Video signal 2 to panel
5	VSIG3	Video signal 3 to panel
6	VSIG4	Video signal 4 to panel
7	VSIG5	Video signal 5 to panel
8	VSIG6	Video signal 6 to panel
9	VSIG7	Video signal 7 to panel
10	VSIG8	Video signal 8 to panel
11	VSIG9	Video signal 9 to panel
12	VSIG10	Video signal 10 to panel
13	VSIG11	Video signal 11 to panel
14	VSIG12	Video signal 12 to panel
15	HVdD	Power supply for H driver
16	RGT	Drive direction pulse for H shift register (H: normal, L: reverse)
17	HST	Start pulse for H shift register drive
18	HCK2	Clock pulse for H shift register drive 2
19	HCK1	Clock pulse for H shift register drive 1
20	Vss	GND (H, V drivers)
21	VssGL	GND for left V gate
22	BLK	Input for PC98 mode
23	ENB	Enable pulse for gate selection
24	VCK	Clock pulse for V shift register drive
25	VST	Start pulse for V shift register drive
26	DWN	Drive direction pulse for V shift register (H: normal, L: reverse)
27	HB	Display switch for S-XGA
28	VB	Display switch for PC98 mode
29	PCG	Improvement pulse for uniformity
30	VVdo	Power supply for V driver
31	COM	Common voltage of panel
32	TEST	Test pin, leave this pin open

Input Equivalent Circuit
To prevent static charges, protective diodes are provided for each pin except the power supplies. In addition, protective resistors are added to all pins except the video signal inputs. All pins are connected to Vss with a high resistor of $1 \mathrm{M} \Omega$ (typ.). The equivalent circuit of each input pin is shown below: (Resistance value: typ.)
(1) VSIG1 to VSIG12, PSIG

(2) HCK1, HCK2

(3) RGT
(4) HST

(5) PCG, VCK

(6) VST, BLK, ENB, HB, DWN

(7) VB

(8) COM

777 are all Vss.

Input Signals

1. Input signal voltage conditions $(\mathrm{Vss}=0 \mathrm{~V})$

Item		Symbol	Min.	Typ.	Max.	Unit
H shift register input voltage HST, HCK1, HCK2, RGT	(Low)	VHIL	-0.5	0.0	0.4	V
	(High)	VHIH	4.5	5.0	5.5	V
V shift register input voltage HB, VB, BLK, VST, VCK, PCG, ENB, DWN	(Low)	VVIL	-0.5	0.0	0.4	V
	(High)	VVIH	4.5	5.0	5.5	V
Video signal center voltage	VVC	7.4	7.5	7.6	V	
Video signal input range*1	Vsig	VVC -5.0	7.5	VVC +5.0	V	
Common voltage of panel*2	Vcom	VVC -0.5	VVC -0.4	VVC -0.3	V	
Uniformity improvement signal input voltage (PSIG)*3	VpsigB	VVC ± 4.9	VVC ± 5.0	VVC ± 5.1	V	
	VpsigG	VVC ± 1.8	VVC ± 1.9	VVC ± 2.0		

*1 Input video signal shall be symmetrical to VVC.
*2 The typical value of the common pad voltage may lower its suitable voltage according to the set construction to use. In this case, use the voltage of which has maximum contrast as typical value.
When the typical value is lowered, the maximum and minimum values may lower.
*3 Input a uniformity improvement signal PSIG in the same polarity with video signals VSIG1 to VSIG12 and which is symmetrical to VVC. PSIG wave form is 2 steps like below, in the upper chart, upper shows signal level of the 1st step, lower shows signal level of the 2nd step. Also, the rising and falling of PSIG are synchronized with the rising of PCG pulse, and the rise time trPSIG and fall time tfPSIG are suppressed within 450 ns (as shown in a diagram below).
The optimum input voltage of PSIG may be changed according as drive conditions of the drive side.

Input waveform of uniformity improvement signal PSIG

*4 PRG shows the time of the 1 st step of PSIG signal, and it is not input to the panel.

Level Conversion Circuit

The LCX029CST has a built-in level conversion circuit in the clock input unit on the panel. The input signal level increases to HVdd or VVdd. The Vcc of external ICs are applicable to $5 \pm 0.5 \mathrm{~V}$.
2. Clock timing conditions $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
(XGA mode: $\mathrm{fHckn}=3.9 \mathrm{MHz}, \mathrm{fVck}=34.3 \mathrm{kHz}$)

	Item	Symbol	Min.	Typ.	Max.	Unit
HST	Hst rise time	trHst	-	-	30	ns
	Hst fall time	tfHst	-	-	30	
	Hst data set-up time	tdHst	55	65	75	
	Hst data hold time	thHst	55	65	75	
HCK	Hckn rise time*5	trHckn	-	-	30	
	Hckn fall time*5	tfHckn	-	-	30	
	Hck1 fall to Hck2 rise time	to1Hck	-15	0	15	
	Hck1 rise to Hck2 fall time	to2Hck	-15	0	15	
VST	Vst rise time	trVst	-	-	100	
	Vst fall time	tfVst	-	-	100	
	Vst data set-up time	tdVst	2	7	12	$\mu \mathrm{s}$
	Vst data hold time	thVst	2	7	12	
VCK	Vck rise time	trVck	-	-	100	ns
	Vck fall time	tfVck	-	-	100	
ENB	Enb rise time	trEnb	-	-	100	
	Enb fall time	tfEnb	-	-	100	
	Horizontal video period completed to Enb fall time	tdEnb	760	800	-	
	Enb rise to $\mathrm{PRG}^{* 4}$ fall time	toPRG*4	110	120	130	
	Enb fall to Pcg rise time	toPcg	830	1000	-	
	Enb pulse width	twEnb	1650	-	-	
PCG	Pcg rise time	trPcg	-	-	30	
	Pcg fall time	tfPcg	-	-	30	
	Pcg rise to Vck rise/fall time	toVck	-100	0	100	
	Pcg fall to horizontal video period start time	toVideo	170	200	-	
	Pcg pulse width	twPcg	1400	1700	-	
PRG*4	PRG*4 rise to Pcg rise time	toPcgr	-10	0	10	
	PRG*4 fall to Pcg fall time	toPcgf	570	700	-	
	PRG*4 pulse width	twPRG*4	830	1000	-	
BLK*6	Blk rise time	trBlk	-	-	100	
	Blk fall time	tfBlk	-	-	100	
	Blk rise to Enb fall time	toEnb	2	1	0	$\mu \mathrm{s}$
	Blk fall to Pcg rise time	toPcg	-1	0	1	

[^2]<Horizontal Shift Register Driving Waveform>

	Item	Symbol	Waveform	Conditions
HST	Hst rise time Hst fall time	trHst tfHst		- Hckn*5 duty cycle 50\% to1Hck $=0 \mathrm{~ns}$ to2Hck $=0 \mathrm{~ns}$
	Hst data set-up time Hst data hold time	tdHst thHst		- Hckn*5 duty cycle 50\% to1Hck $=0 \mathrm{~ns}$ to2Hck $=0 \mathrm{~ns}$
HCK	Hckn rise time*5 Hckn fall time*5	trHckn tfHekn		- Hckn*5 duty cycle 50\% to $1 \mathrm{Hck}=0 \mathrm{~ns}$ to2Hck $=0 \mathrm{~ns}$
	Hck1 fall to Hck2 rise time Hck1 rise to Hck2 fall time	to1Hck		

*7 Definitions: The right-pointing arrow (\rightarrow) means +.
The left-pointing arrow (\bullet) means - .
The black dot at an arrow (•) indicates the start of measurement.
<Vertical Shift Register Driving Waveform>

	Item	Symbol	Waveform	Conditions
PCG*8	Pcg rise time Pcg fall time	trPcg tfPcg		
	Pcg rise to Vck rise/fall time	toVck		
	Pcg fall to horizontal video period start time	toVideo	50\% - toVck	
	Pcg pulse width	twPcg		
$\begin{array}{\|l} * 8 \\ P R G * 4 \end{array}$	$\mathrm{PRG}^{* 4}$ rise to Pcg rise time	toPcgr		
	PRG*4 fall to Pcg fall time	toPcgf		
	PRG*4 pulse width	twPRG*4		
BLK	Blk rise time	trBlk		
	Blk fall time	tfBlk		
	Blk rise to Enb fall time	toEnb		
	Blk fall to Pcg rise time	toPcg		

8 PCG input pin and $\mathrm{PRG}^{ 4}$ should be "H" level during the horizontal 1 H period, where the above BLK is low more than 10 ns .

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{HVDD}=13.5 \mathrm{~V}, \mathrm{VVDD}=15.5 \mathrm{~V}\right)$

1. Horizontal drivers

Item			Symbol	Min.	Typ.	Max.	Unit
Input pin capacitance	HCKn	CHckn	-	15	20	pF	
	HST	CHst	-	15	20	pF	
Input pin current	HCK1		-500	-200	-	$\mu \mathrm{A}$	HCK1 = GND
	HCK2		-1000	-300	-	$\mu \mathrm{A}$	HCK2 = GND
	HST		-500	-150	-	$\mu \mathrm{A}$	HST = GND
	RGT		-150	-40	-	$\mu \mathrm{A}$	RGT = GND
Video signal input pin capacitance	Csig	-	50	200	pF		
Current consumption		IH	-	10.0	15.0	mA	HCKn: HCK1, HCK2 (3.9MHz)

2. Vertical drivers

Item	Symbol	Min.	Typ.	Max.	Unit	Condition
Input pin capacitance VCK	CVck	-	15	20	pF	
VST	CVst	-	15	20	pF	
Input pin current VCK, PCG		-1000	-150	-	$\mu \mathrm{A}$	VCK = GND, PCG = GND
VST, ENB, DWN, BLK, HB, VB		-150	-30	-	$\mu \mathrm{A}$	VST, ENB, DWN,BLK, HB $\mathrm{VB}=\mathrm{GND}$
Current consumption	IV	-	3.0	6.0	mA	VCK: (34.3kHz)

3. Total power consumption of the panel

Item	Symbol	Min.	Typ.	Max.	Unit
Total power consumption of the panel	PWR	-	200	350	mW

4. Pin input resistance

Item	Symbol	Min.	Typ.	Max.	Unit
Pin - Vss input resistance	Rpin	0.4	1	-	$\mathrm{M} \Omega$

5. Uniformity improvement signal

Item	Symbol	Min.	Typ.	Max.	Unit
Input pin capacitance for uniformity improvement signal	CPSIGo	-	11	16	nF

6. COM pin capacitance

Item	Symbol	Min.	Typ.	Max.	Unit
COM pin capacitance	COM	-	17	25	nF

Electro-optical Characteristics
(XGA mode)

Item			Symbol	Measurement method	Min.	Typ.	Max.	Unit
Contrast ratio		$25^{\circ} \mathrm{C}$	CR	1	300	400	-	-
Optical transmittance		$25^{\circ} \mathrm{C}$	T	1	23	26	-	\%
V-T characteristics	V90	$25^{\circ} \mathrm{C}$	RV90-25	3	0.9	1.2	1.5	V
			GV90-25		1.0	1.3	1.6	
			BV90-25		1.1	1.4	1.7	
		$60^{\circ} \mathrm{C}$	RV90-60		0.8	1.1	1.4	
			GV90-60		0.9	1.2	1.5	
			BV90-60		1.0	1.3	1.6	
	V50	$25^{\circ} \mathrm{C}$	RV50-25		1.2	1.5	1.8	
			GV50-25		1.3	1.6	1.9	
			BV50-25		1.4	1.7	2.0	
		$60^{\circ} \mathrm{C}$	RV50-60		1.2	1.5	1.8	
			GV50.60		1.3	1.6	1.9	
			BV50-60		1.4	1.7	2.0	
	V_{10}	$25^{\circ} \mathrm{C}$	RV10-25		1.6	1.9	2.2	
			GV10-25		1.7	2.0	2.3	
			BV10-25		1.8	2.1	2.4	
		$60^{\circ} \mathrm{C}$	RV $\mathrm{V}_{10 \cdot 60}$		1.6	1.9	2.2	
			GV10.60		1.7	2.0	2.3	
			BV ${ }_{10-60}$		1.8	2.1	2.4	
Response time	ON time	$0^{\circ} \mathrm{C}$	ton0	4	-	28.0	80.0	
		$25^{\circ} \mathrm{C}$	ton25		-	14.0	40.0	ms
	OFF time	$0^{\circ} \mathrm{C}$	toff0		-	72.0	200.0	
		$25^{\circ} \mathrm{C}$	toff25		-	34.0	70.0	
Flicker		$60^{\circ} \mathrm{C}$	F	5	-	-67.0	-40.0	dB
Image retention time		$25^{\circ} \mathrm{C}$	YT60	6	-	0	-	s
Cross talk		$25^{\circ} \mathrm{C}$	CTK	7	-	-	5	\%

Reflection Preventive Processing

When a phase substrate which rotates the polarization axis is used to adjust to the polarization direction of a polarization screen or prism, use a phase substrate with reflection preventive processing on the surface. This prevents characteristic deterioration caused by luminous reflection.
<Electro-optical Characteristics Measurement>

- Basic measurement conditions
(1) Driving voltage
$H V D D=13.5 \mathrm{~V}, \mathrm{VV} D D=15.5 \mathrm{~V}$
$\mathrm{VVC}=7.5 \mathrm{~V}$, $\mathrm{Vcom}=7.1 \mathrm{~V}$
(2) Measurement temperature
$25^{\circ} \mathrm{C}$ unless otherwise specified.
(3) Measurement point

One point in the center of the screen unless otherwise specified.
(4) Measurement systems

Two types of measurement systems are used as shown below.
(5) Video input signal voltage (Vsig)

Vsig $=7.5 \pm$ VAC $[\mathrm{V}] \quad$ (VAC $=$ signal amplitude)

- Measurement system I

1. Contrast Ratio

Contrast Ratio (CR) is given by the following formula (1).

$$
C R=\frac{L(\text { White })}{L(\text { Black })} \ldots(1)
$$

L (White): Surface luminance of the center of the screen at the input signal amplitude $\mathrm{V}_{\mathrm{AC}}=0.5 \mathrm{~V}$.
L (Black): Surface luminance of the center of the screen at $\mathrm{V}_{\mathrm{AC}}=5.0 \mathrm{~V}$.
Both luminosities are measured by System I.

2. Optical Transmittance

Optical Transmittance (T) is given by the following formula (2).

$$
\mathrm{T}=\frac{\text { White luminance }}{\text { Luminance of light source }} \times 100[\%] \ldots \text { (2) }
$$

"White luminance" means the maximum luminance on the screen at the input signal amplitude $\mathrm{V}_{\mathrm{AC}}=0.5 \mathrm{~V}$ on Measurement System I.

3. V-T Characteristics

V-T characteristics, or the relationship between signal amplitude and the transmittance of the panels, are measured by System II by inputting the same signal amplitude V_{AC} to each input pin. V_{90}, V_{50}, and V_{10} correspond to the voltages which define $90 \%, 50 \%$, and 10% of transmittance respectively.

VAC - Signal amplitude [V]

4. Response Time

Response time ton and toff are defined by formulas (3) and (4) respectively.

$$
\begin{aligned}
& \text { ton }=\mathrm{t} 1-\mathrm{tON} \ldots(3) \\
& \text { toff }=\mathrm{t} 2-\mathrm{tOFF} \ldots(4)
\end{aligned}
$$

t1: time which gives 10% transmittance of the panel.
t2: time which gives 90% transmittance of the panel.
The relationships between $\mathrm{t} 1, \mathrm{t} 2, \mathrm{tON}$ and tOFF are shown in the right figure.

5. Flicker

Flicker (F) is given by formula (5). DC and AC (XGA/NTSC: 30 Hz , rms, PAL: 25 Hz , rms) components of the panel output signal for gray raster* mode are measured by a DC voltmeter and a spectrum analyzer in System II.

$$
\begin{array}{ll}
\mathrm{F}[\mathrm{~dB}]=20 \log \left\{\frac{\mathrm{AC} \text { component }}{\mathrm{DC} \text { component }}\right\} \ldots(5) \quad \begin{array}{l}
* \\
\\
\\
\text { is given by } \mathrm{V} \text { sig }=7.5 \pm \mathrm{V}_{50}[\mathrm{~V}] \\
\\
\\
\text { where: } \mathrm{V}_{50} \text { is the signal amplitude which gives } \\
\\
50 \% \text { of transmittance in } \mathrm{V} \text { - } \mathrm{T} \text { characteristics. }
\end{array}
\end{array}
$$

6. Image Retention Time

Apply the monoscope signal to the LCD panel for 60 minutes and then change this signal to the gray scale of V sig $=7.5 \pm V_{A C}\left(V_{A C}: 3\right.$ to $4 V$). Judging by sight at the $V_{A C}$ that holds the maximum image retention, measure the time till the residual image becomes indistinct.

* Monoscope signal conditions:

Vsig $=7.5 \pm 5.0$ or ± 2.0 [V]
(shown in the right figure)
Vcom $=7.1 \mathrm{~V}$

7. Cross Talk

Cross talk is determined by the luminance differences between adjacent areas represented by Wi' and Wi $(\mathrm{i}=1$ to 4$)$ around a black window (Vsig $=5.0 \mathrm{~V} / 1 \mathrm{~V}$).

$$
\text { Cross talk value CTK }=\left|\frac{\mathrm{Wi}-\mathrm{Wi}}{\mathrm{Wi}}\right| \times 100[\%]
$$

Viewing angle characteristics (Typical value)

Optical transmittance of LCD panel (Typical value)

Measurement method: Measurement system II

1. Dot Arrangement
The dots are arranged in a stripe. The shaded area is used for the dark border around the display.
sIop ZLL

2. LCD Panel Operations

[Description of basic operations]

- A vertical driver, which consists of vertical shift registers, enable-gates and buffers, applies a selected pulse to every 768 gate lines sequentially in a single horizontal scanning period. (XGA mode)
- A horizontal driver, which consists of horizontal shift registers, gates and CMOS sample-and-hold circuits, applies selected pulses to every 1024 signal electrodes sequentially in a single horizontal scanning period. These pulses are used to supply the sampled video signal to the row signal lines.
- Vertical and horizontal shift registers address one pixel, and then Thin Film Transistors (TFTs; two TFTs) turn on to apply a video signal to the dot. The same procedures lead to the entire 1024×768 dots to display a picture in a single vertical scanning period.
- The data and video signals shall be input with the 1 H -inverted system.

[Description of operating mode]

This LCD panel can change the active area by displaying a black frame to support various computer or video signals. The active area is switched by HB, VB and BLK. However, the center of the screen is not changed. The active area setting modes are shown below.

HB	VB	BLK	Screen aspect ratio
H	H	H	$4: 3$ 1024×768
L	H	H	$5: 4^{* 2}$ 960×768
H	L	$* 1$	$8: 5$ 1024×640

*1 Input BLK pulse (refer to drive waveform and vertical blanking period of PC98 made).
*2 For only aspect ratio 5:4 mode, set Psig and COM voltage as shown below. The value of PsigG and COM voltage is typical value. It is necessary to optimize the voltage for each set construction.

*3 PRG shows the time of the 1st step of Psig signal, and it is not input to the panel.

This LCD panel has the following functions to easily apply to various uses, as well as various broadcasting systems.

- Right/left inverse mode
- Up/down inverse mode

These modes are controlled by two signals (RGT and DWN). The right/left and/or up/down setting modes are shown below.

RGT	Mode
H	Right scan
L	Left scan

DWN	Mode
H	Down scan
L	Up scan

Right/left and/or up/down mean the direction when the Pin 1 marking is located at the right side with the pin block upside.

To locate the active area in the center of the panel in each mode, polarity of the start pulse and clock phase for both the H and V systems must be varied. The phase relationship between the start pulse and the clock for each mode is shown below.

(1) Vertical direction display cycle ($\mathrm{DWN}=\mathrm{H}, \mathrm{L}$)

(1.1) XGA, SXGA

(1.2) PC98

(2) Horizontal direction display cycle

(2.1.1) XGA, PC98 (RGT = H)

(2.1.2) XGA, PC98 (RGT = L)

(2.2.1) SXGA (RGT = H)

(2.2.2) $\mathrm{SXGA}(\mathrm{RGT}=\mathrm{L})$

(3) Vertical blanking cycle of PC98 mode

The input waveforms of PCG, PRG*1 and PSIG should be changed as shown below when BLK pulse is input.

*1 PRG shows the period of PSIG black level, it is not input to the panel.

3. 12-dot Simultaneous Sampling

The horizontal shift register samples signals VSIG1 to VSIG12 simultaneously. This requires phase matching between signals VSIG1 to VSIG12 to prevent the horizontal resolution from deteriorating. Thus, phase matching between each signal is required using an external signal delaying circuit before applying the video signal to the LCD panel.

The block diagram of the delaying procedure using the sample-and-hold method is as follows. The following phase relationship diagram indicates the phase setting for right scan (RGT = High level). For left scan (RGT = Low level), the phase settings for signals VSIG1 to VSIG12 are exactly reversed.

<Phase relationship of delaying sample-and-hold pulses> (right scan)

Display System Block Diagram
An example of display system is shown below.

Notes on Handling

(1) Static charge prevention

Be sure to take the following protective measures. TFT-LCD panels are easily damaged by static charges.
a) Use non-chargeable gloves, or simply use bare hands.
b) Use an earth-band when handling.
c) Do not touch any electrodes of a panel.
d) Wear non-chargeable clothes and conductive shoes.
e) Install conductive mats on the working floor and working table.
f) Keep panels away from any charged materials.
g) Use ionized air to discharge the panels.
(2) Protection from dust and dirt
a) Operate in a clean environment.
b) When delivered, the panel surface (glass panel) is covered by a protective sheet. Peel off the protective sheet carefully so as not to damage the glass panel.
c) Do not touch the glass panel surface. The surface is easily scratched. When cleaning, use a cleanroom wiper with isopropyl alcohol. Be careful not to leave a stain on the surface.
d) Use ionized air to blow dust off the glass panel.
(3) Light resistance

Orientation film and organic matter such as liquid crystal used inside of the LCD panel deteriorate by the light chemical reaction. As a result, its indication characteristics may irreversible change. The progress of its chemical reaction is influenced by short wavelength side's light (characteristics of UV cut filter) and temperature when quantitiy of light is constant. To control its progress, attach suitable UV cut filter between light source and LCD panel. (Sharp characteristic's filter of $\lambda>425 \mathrm{~nm}$ is recommended.) Also, use suitable IR cut filter to lower the temperature of LCD panel and cool the panel carefully.
(4) Other handling precautions
a) Do not twist or bend the flexible PC board especially at the connecting region because the board is easily deformed.
b) Do not drop the panel.
c) Do not twist or bend the panel or panel frame.
d) Keep the panel away from heat sources.
e) Do not dampen the panel with water or other solvents.
f) Avoid storing or using the panel at a high temperature or high humidity, which may result in panel damages.
g) Minimum radius of bending curvature for a flexible substrate must be 1 mm .
h) Torque required to tighten screws on a panel must be $0.245 \mathrm{~N} \cdot \mathrm{~m}$ (measurement screw : JCIS Type 1, M2.6 flat head screw) or less.
i) Use appropriate filter to protect a panel.
j) Do not pressure the portion other than mounting hole (cover).

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: Vin
 $5.0 \pm 0.5 \mathrm{~V}$

[^2]: *5 Hckn means Hck1 and Hck2.
 *6 Blk is the timing during PC98 mode, which keeps "H" level in other modes.

